عدد طلائی عددیست ، تقریباَ مساوی 1.618 ، که خواص جالب بسیاری دارد ، و بعلت تکرار زیاد آن در هندسه ، توسط ریاضیدانان کهن مطالعه شده است . اشکال تعریف شده با نسبت طلائی ، از نظر زیبائی شناسی در فرهنگهای غربی دلپذیر شناخته شده، چون بازتابنده خاصیتی بین تقارن و عدم تقارن است.
دنیای اعداد بسیار زیباست و شما می توانید در آن شگفتیهای بسیاری را بیابید. در میان اعداد برخی از آنها اهمیت فوق العاده ای دارند، یکی از این اعداد که سابقه آشنایی بشر با آن به هزاران سال پیش از میلاد میرسد عددی است بنام "نسبت طلایی" یا Golden Ratio. این نسبت هنوز هم بارها در هنر و طراحی استفاده می شود . نسبت طلائی به نامهای برش طلائی ، عدد طلائی ، نسبت الهی نیز شناخته می شود و معمولاَ با حرف یونانی ، مشخص می شود. ![]()
تعریف
کاربردها
عدد طلائی از دیدگاه کپلرکپلر (Johannes Kepler 1571-1630) منجم معروف نیز علاقه بسیاری به نسبت طلایی داشت بگونه ای که در یکی از کتابهای خود اینگونه نوشت : "هندسه دارای دو گنج بسیار با اهمیت می باشد که یکی از آنها قضیه فیثاغورث و دومی رابطه تقسیم یک پاره خط با نسبت طلایی می باشد. اولین گنج را می توان به طلا و دومی را به جواهر تشبیه کرد".
+ نوشته شده در شنبه نوزدهم فروردین ۱۳۹۶ساعت 19:52  توسط عباس مصلی نژاد
|
در ریاضیات، منظور از توابع مثلثاتی شش تابع سینوس، کسینوس،تانژانت، کتانژانت، سکانت و کسکانت است که این توابع رابطهٔ میان زاویهها و ضلعهای یک مثلث قائمالزاویه را نشان میدهند و به همین دلیل توابع مثلثاتی نامیده میشوند. قدمت اولین متون به جا مانده از توابع مثلثاتی به دوران پیش از میلاد در مصر و یونان بازمیگردد. قضیهٔ تالس توسط تالس در سده ششم پیش از میلاد در مصر مطرح شد، همچنین از قضیهٔ فیثاغورس به عنوان سنگ بنای مثلثات یاد میشود. علاوه بر مصر و یونان، کشورهای دیگری از جمله هند، کشورهای اسلامی، چین و کشورهای اروپایی پیشبردهای مطرحی در زمینه مثلثات داشتند که میتوان به افرادی چون خوارزمی، بتانی، ابوالوفا محمد بوزجانی، شن کو، گو شوجینگ و رتیکوس اشاره کرد. تعاریف متفاوتی از توابع مثلثاتی بیان شده است، سادهترین آنها بر پایهٔ دایرهٔ واحد است که در این تعریف دایرهای با شعاع ۱ ترسیم میشود و شعاعی با زاویهٔ مشخص نسبت به محور افقی روی آن رسم شده و یک مثلث را تشکیل میدهد. هر یک از توابع مثلثاتی را میتوان با پارهخطی در این دایره نشان داد. تعاریف دیگری از توابع مثلثاتی نیز بر پایهٔ انتگرال، سری توانی و معادلهٔ دیفرانسیل بیان شده است که هر یک از آنها کاربرد خاص خود را دارند. برای نمونه در تعریف بر پایهٔ سری توانی، از سری مکلورن استفاده میشود که در محاسبهٔ مقدار تقریبی آنها توابع مثلثاتی استفاده فراوان دارد. توابع مثلثاتی بر روی یک زاویه عملیات انجام میدهند و یک عدد حقیقی را برمیگردانند و هر یک از آنها ویژگیهای خاص خود را دارند، از جمله زوج یا فرد بودن، متناوب بودن، پیوسته بودن، متعامد بودن. کاربرد اصلی این تابعها در محاسبهٔ اندازهٔ ضلعها و زاویههای یک مثلث و سایر عوامل مرتبط با آنها است. این کاربرد، در دانشهای مختلفی مانند نقشهبرداری، ناوبری و زمینههای گوناگون فیزیک مورد استفاده قرار میگیرد. در نقشهبرداری، با استفاده از اندازهگیری زاویهٔ یک نقطه نسبت به دو نقطه معین، مختصات آن نقطه را محاسبه میکنند که امروزه از این روش برای اندازهگیری سهبعدی نوری استفاده میشود یا در ناوبری، تنظیم خط سیر کشتیها و سایر شناورها بر پایهٔ اجسام ثابت مانند فانوس دریایی با بهرهگیری از توابع مثلثاتی انجام میشود. همچنین به علت خاصیت تناوبی بودن این تابعها، از آنها در مدلسازی فرایندهای نوسانی مانند نور و موج استفاده میشود. برای نمونهقانون اسنل بنیادیترین کاربرد توابع مثلثاتی است که در پدیدهٔشکست نور به کار میرود. از دیگر کاربردهای توابع مثلثاتی میتوان به استفاده آن در صنعت برق و مخابرات اشاره کرد. از جمله کاربرد امواج سینوسی در جریانهای متناوب و همچنین انواعمدولاسیون که برا پایه همین امواج سینوسی انجام میشود.
+ نوشته شده در شنبه نوزدهم فروردین ۱۳۹۶ساعت 19:44  توسط عباس مصلی نژاد
|
در ریاضیات، منظور از توابع مثلثاتی شش تابع سینوس، کسینوس،تانژانت، کتانژانت، سکانت و کسکانت است که این توابع رابطهٔ میان زاویهها و ضلعهای یک مثلث قائمالزاویه را نشان میدهند و به همین دلیل توابع مثلثاتی نامیده میشوند. قدمت اولین متون به جا مانده از توابع مثلثاتی به دوران پیش از میلاد در مصر و یونان بازمیگردد. قضیهٔ تالس توسط تالس در سده ششم پیش از میلاد در مصر مطرح شد، همچنین از قضیهٔ فیثاغورس به عنوان سنگ بنای مثلثات یاد میشود. علاوه بر مصر و یونان، کشورهای دیگری از جمله هند، کشورهای اسلامی، چین و کشورهای اروپایی پیشبردهای مطرحی در زمینه مثلثات داشتند که میتوان به افرادی چون خوارزمی، بتانی، ابوالوفا محمد بوزجانی، شن کو، گو شوجینگ و رتیکوس اشاره کرد. تعاریف متفاوتی از توابع مثلثاتی بیان شده است، سادهترین آنها بر پایهٔ دایرهٔ واحد است که در این تعریف دایرهای با شعاع ۱ ترسیم میشود و شعاعی با زاویهٔ مشخص نسبت به محور افقی روی آن رسم شده و یک مثلث را تشکیل میدهد. هر یک از توابع مثلثاتی را میتوان با پارهخطی در این دایره نشان داد. تعاریف دیگری از توابع مثلثاتی نیز بر پایهٔ انتگرال، سری توانی و معادلهٔ دیفرانسیل بیان شده است که هر یک از آنها کاربرد خاص خود را دارند. برای نمونه در تعریف بر پایهٔ سری توانی، از سری مکلورن استفاده میشود که در محاسبهٔ مقدار تقریبی آنها توابع مثلثاتی استفاده فراوان دارد. توابع مثلثاتی بر روی یک زاویه عملیات انجام میدهند و یک عدد حقیقی را برمیگردانند و هر یک از آنها ویژگیهای خاص خود را دارند، از جمله زوج یا فرد بودن، متناوب بودن، پیوسته بودن، متعامد بودن. کاربرد اصلی این تابعها در محاسبهٔ اندازهٔ ضلعها و زاویههای یک مثلث و سایر عوامل مرتبط با آنها است. این کاربرد، در دانشهای مختلفی مانند نقشهبرداری، ناوبری و زمینههای گوناگون فیزیک مورد استفاده قرار میگیرد. در نقشهبرداری، با استفاده از اندازهگیری زاویهٔ یک نقطه نسبت به دو نقطه معین، مختصات آن نقطه را محاسبه میکنند که امروزه از این روش برای اندازهگیری سهبعدی نوری استفاده میشود یا در ناوبری، تنظیم خط سیر کشتیها و سایر شناورها بر پایهٔ اجسام ثابت مانند فانوس دریایی با بهرهگیری از توابع مثلثاتی انجام میشود. همچنین به علت خاصیت تناوبی بودن این تابعها، از آنها در مدلسازی فرایندهای نوسانی مانند نور و موج استفاده میشود. برای نمونهقانون اسنل بنیادیترین کاربرد توابع مثلثاتی است که در پدیدهٔشکست نور به کار میرود. از دیگر کاربردهای توابع مثلثاتی میتوان به استفاده آن در صنعت برق و مخابرات اشاره کرد. از جمله کاربرد امواج سینوسی در جریانهای متناوب و همچنین انواعمدولاسیون که برا پایه همین امواج سینوسی انجام میشود.
+ نوشته شده در شنبه نوزدهم فروردین ۱۳۹۶ساعت 19:43  توسط عباس مصلی نژاد
|
به مجموعهی اعداد زیر ، اعداد صحیح یا اعداد درست گویند و آن را با Z نمایش میدهند:
::{ ... , 3 , 2 , 1 , 0 , 1- , 2- , 3- , ...} = Z درواقع اعداد صحیح شامل اعداد طبیعی مثبت و اعداد طبیعی منفی و عدد صفر است. این اعداد همانند اعداد طبیعی جزء مجموعه های شمارش پذیر نامتناهی است. شاخه ای از ریاضیات که به مطالعه در مورد ویژگیهای اعداد صحیح می پردازدنظریه اعداد نام دارد. ویژگیهای جبریاعداد صحیح همانند اعداد طبیعی نسبت به اعمال جمع و ضرب بسته است،یعنی جمع وضرب هر دو عدد صحیح، یک عدد صحیح است.
اگر چه عمل تقسیم روی مجموعه Z تعریف نشده است .ولی یکی از مهمترین خواص تقسیم به نام الگوریتم تقسیم در این مجموعه تعریف شده است.این الگوریتم به ما میگوید : دو عدد صحیح مانند a وb که b ≠ 0 در نظر میگیریم.در این صورت اعداد صحیح یکتا مانند q وr وجود دارند به طوریکه: تعریف اعداد صحیح از روی اعداد طبیعی
+ نوشته شده در شنبه نوزدهم فروردین ۱۳۹۶ساعت 19:41  توسط عباس مصلی نژاد
|
به مجموعهی اعداد زیر ، اعداد صحیح یا اعداد درست گویند و آن را با Z نمایش میدهند:
::{ ... , 3 , 2 , 1 , 0 , 1- , 2- , 3- , ...} = Z درواقع اعداد صحیح شامل اعداد طبیعی مثبت و اعداد طبیعی منفی و عدد صفر است. این اعداد همانند اعداد طبیعی جزء مجموعه های شمارش پذیر نامتناهی است. شاخه ای از ریاضیات که به مطالعه در مورد ویژگیهای اعداد صحیح می پردازدنظریه اعداد نام دارد. ویژگیهای جبریاعداد صحیح همانند اعداد طبیعی نسبت به اعمال جمع و ضرب بسته است،یعنی جمع وضرب هر دو عدد صحیح، یک عدد صحیح است.
اگر چه عمل تقسیم روی مجموعه Z تعریف نشده است .ولی یکی از مهمترین خواص تقسیم به نام الگوریتم تقسیم در این مجموعه تعریف شده است.این الگوریتم به ما میگوید : دو عدد صحیح مانند a وb که b ≠ 0 در نظر میگیریم.در این صورت اعداد صحیح یکتا مانند q وr وجود دارند به طوریکه: تعریف اعداد صحیح از روی اعداد طبیعی
+ نوشته شده در شنبه نوزدهم فروردین ۱۳۹۶ساعت 19:41  توسط عباس مصلی نژاد
|
به مجموعهی اعداد زیر ، اعداد صحیح یا اعداد درست گویند و آن را با Z نمایش میدهند:
::{ ... , 3 , 2 , 1 , 0 , 1- , 2- , 3- , ...} = Z درواقع اعداد صحیح شامل اعداد طبیعی مثبت و اعداد طبیعی منفی و عدد صفر است. این اعداد همانند اعداد طبیعی جزء مجموعه های شمارش پذیر نامتناهی است. شاخه ای از ریاضیات که به مطالعه در مورد ویژگیهای اعداد صحیح می پردازدنظریه اعداد نام دارد. ویژگیهای جبریاعداد صحیح همانند اعداد طبیعی نسبت به اعمال جمع و ضرب بسته است،یعنی جمع وضرب هر دو عدد صحیح، یک عدد صحیح است.
اگر چه عمل تقسیم روی مجموعه Z تعریف نشده است .ولی یکی از مهمترین خواص تقسیم به نام الگوریتم تقسیم در این مجموعه تعریف شده است.این الگوریتم به ما میگوید : دو عدد صحیح مانند a وb که b ≠ 0 در نظر میگیریم.در این صورت اعداد صحیح یکتا مانند q وr وجود دارند به طوریکه: تعریف اعداد صحیح از روی اعداد طبیعی
+ نوشته شده در شنبه نوزدهم فروردین ۱۳۹۶ساعت 19:41  توسط عباس مصلی نژاد
|
* لئوپولد كرونكر رياضيدان آلماني اظهار داشته است كه خداوند اعداد صحيح را آفريد و بشر باقي رياضيات را. *
درباره ي اعداد اول در بين اعداد طبيعي بزرگتر از يك يعني …و ۴و۳و۲ اعدادي وجود دارند كه تنها بر يك و خود بخش پذيرند، اين اعداد را اعداد اول مي نامند. اعداد اول مبنايي براي همه ي عددهاي طبيعي است ، به اين معني كه هر عدد طبيعي به صورت حاصل ضرب تواني از اعداد اولي است كه مقسوم عليه هاي اين عددند. به عنوان مثال . نخستين هفت عدد اول متمايز عبارتند از: ۲و۳و۷و۱۱و۱۳و۱۷٫ اينك اين سؤال پيش مي آيد كه آيا اين رشته از اعداد مختوم است يا اينكه تا بي شمار ادامه دارد . به عبارت ديگر آيا بزرگترين عدد اول وجود دارد يا نه. جواب اين است كه بزرگترين عدد اول وجود ندارد. اين موضوع از عصر طلائي يونانيان مكشوف بوده و توسط اقليدس در سه قرن قبل از ميلاد به اثبات رسيده است. استدلال وي بي اندازه ساده و مبرهن است و هنوز هم تازگي خود را حفظ كرده. پس از اثبات نامتناهي بودن مجموعه ي اعداد اول سؤالاتي ديگر در مورد اين اعداد مطرح مي شود، كه به بعضي از آنها پاسخ داده شده ، ولي برخي هم همچنان بي جواب باقي مانده اند. در اين جا چند نمونه از اين سؤالات مورد بررسي قرار مي گيرند، و ضمناً برهان اقليدس نيز ارائه خواهد گرديد. معلوم نيست كه مفهوم اول براي اولين بار در چه زماني طرح شده است و چه مدتي سپري گشته تا از مطالعه در خواص اوليه چنين اعدادي به نامتناهي بودن آن پي برده شود. شايد پس از نخستين ملاحظات تجربي و نيز مطالعه ي عملي در خواص اعدادي چون ۲و۳و۱۱و۱۷ اين سؤال طبعاً پيش آمده است. برهان ذيل، براي اثبات نامتناهي بودن رشته ي اعداد اول هنوز هم از ساده ترين برهان ها در اين زمينه است. فرض كنيم كه چنين نباشد در اين صورت ، عدد اولي مانند p وجود دارد كه از هر عدد اول ديگر بزرگتر است. اينك را در نظر مي گيريم اين عدد بر هيچ يك از اعداد ( )بخشپذير نيست . چون m يك عامل اول دارد و اين عامل در بين اعداد ( )نيست پس عامل اولي به غير از اعداد ياد شده دارد و اين با فرض ما در تناقض است. اين نتيجه ي ظريف و زيباي اقليدسي ، كه ضمناً برهانش هم بسيار ساده است ، يكي از اولين نمونه ي برهانهاي مشهود رياضي است كه به طريقه ي برهان خلف صورت گرفته است. پس ازبررسي اين حكم سؤالات تازه اي مطرح مي شود، و پاسخ به اين سؤالات منجر به نتايج و ملاحظات ديگري مي گردد. به عنوان مثال ، با بكار بردن مفهوم « فاكتوريل» مي توان متقاعد شد كه همواره يك رشته ي بقدر كافي طولاني از اعداد طبيعي متوالي كه اول نباشد وجود دارد. در واقع به ازاي هر n مفروض مي توان n عدد متوالي ، با در نظر گرفتن اعداد طبيعي : n!+2,n!+3,n!+4,…,n!+n به دست آورد؛ اين اعداد جملگي مركب اند (غير اول). زيرا اولي بر ۲ ودومي ۳ و سومي ۴ و n امي برn بخش پذير است. از بين مسائل معروف اعداد اول ، مقدماتي ترين آنها مسئله ذيل است: در مورد اعداد طبيعي زوج به امتحان ملاحظه شده است كه قابل نمايش به صورت حاصل جمع دو عدد اول است. « كريستيان گلدباخ» رياضيدان آلماني حالت كلي را حدس زد. يعني به حدس اظهار داشت كه هر عدد طبيعي زوج بزرگتر از ۲ قابل نمايش به صورت حاصل جمع دو عدد اول است. ( اين موضوع در گلچين رياضي هم آمده) تا عصر حاضر اين حدس به يقين مبدل نشده است و رياضيدانان موفق به اقامه ي برهان براي آن نشده اند. صحت اين حكم براي اعداد طبيعي زوج كوچكتر از ۱۰۸ محقق شده است. ( تا سال ۱۹۶۸) با بكار بردن ماشينهاي الكتريكي محاسبه ، مي توان آمارهايي فراهم آورد براي نشان دادن اينكه به چند طريق مي توان يك عدد زوج مانند ۲n به صورت حاصل جمع دو عدد اول نوشت ، عده ي طرق با بزرگ شدن n بزرگ مي شوند. در حال حاضر رياضيدانان روسي « ايوان ماتويويچ ويورگرادوف» ثابت كرده است كه هر عدد طبيعي فرد بقدر كافي بزرگ ، قابل نمايش به صورت حاصل جمع سه عدد اول است. فرمولي كه بوسيله آن بتوان هر عدد اول بقدر كافي بزرگ را به دست آورد، وجود ندارد. البته عبارت هايي در دست است كه از روي آن مي توان عده اي از اعداد اول را تعيين كرد. به عنوان مثال فرمول اويلر در دست است كه از روي آن مي توان عده اي از اعداد اول را تعيين كرد. به عنوان مثال فرمول اويلر به ازاي اعداد اول متمايزي به دست مي دهد . همچنين معلوم نيست كه تعدادي نامتناهي از اعداد اول دوقلو ، يعني اعداد اولي كه تفاضل آنها ۲ باشد مانند ۵و۷ ، ۱۱و۱۳، ۲۹و۳۱ و غيره وجود دارد يا نه. اينها نمونه هايي هستند از مسائلي ساده در اعداد اول كه بطور طبيعي مطرح مي شوند و اگر چه صورت ظاهري آنها ساده به نظر مي رسد، اثبات آنها غالباً دشوار است و اين امكان وجود دارد كه با معلومات رياضي عصر ما ثابت نگردند. اما در مورد حكمي كه اخيراً ذكر شد، اطلاعاتي در دست است. به عنوان مثال، معلوم گشته كه رشته ي اعداد اول به صورت ۴k+1 و۴k+3 نامتناهي است. به طور كلي ثابت شده كه در تصاعد حسابي ak+b،كه در اين a وb نسبت به هم اولند و k=1,2,3,… يك تعداد نامتناهي عدد اول وجود دارد. قضایای اعداد اول سری اعداد اول به این صورت شروع میشود: ۲، ۳، ۵، ۷، ۱۱، ۱۳، ۱۷، ۱۹ … که عدد ۱ جزو اعداد اول نیست پس به تناقض می رسیم و فرض خلف باطل است. اعداد اول نامتناهی هستند. قضيه ۶-هر عدد فرد را میتوان به صورت دو برابر يك عدد اول بعلاوه يك عدد اول ديگر نوشت. بزرگترین عدد اول کشف شده برابر دو به توان ۳۰ميليون و ۴۰۲هزار و ۴۵۷منهاي يك است.این عدد یک عدد مرسن است. عدد مرسن عددی است که برابر ۲ به توان n منهای یک است. روشي براي شكار اعداد اول توان اعداد اول را یافت و چطور می توان اعدادی را که اول نیستند به عوامل اول شان تجزیه کرد. شاید اولین پاسخ به این سوال غربال اراتستن بوده باشد. تا امروز تلاش های زیادی برای یافتن یک فرمول تولید کننده اعداد اول و یا الگویی برای ظهور اعداد اول در میان دیگر اعداد انجام شده است که هر چند کمک های زیادی به گسترش نظریه اعداد کرده اند اما ساختار پیچیده اعداد اول همچنان در مقابل این تلاش ها مقاومت می کند. جستجو برای الگوهایی از نظم در اعداد اول اعداد اول مرسن: اگر p اول باشد اعدادی به شکل ۲p-۱ را عدد مرسن میگوییم. اگر این اعداد اول باشند به آن ها عدد اول مرسن می گوییم. به ازای p برابر ۲ و ۳ و ۵ و ۷ عدد مرسن اول است اما اگر p را ۱۱ بگیریم مرکب است. تا امروز ۳۹ عدد اول مرسن شناخته شده اند که آخرینشان به ازای p=۱۳۴۶۶۹۱۷ به دست میآید و ۴۰۵۳۹۴۶ رقم دارد. یعنی بین همه اعداد اول کوچکتر از ۱۳۴۶۶۹۱۷ تنها ۳۹ تا عدد اول مرسن تولید می کنند.
اعداد اول دوقلو: به اعداد اولی که پشت سر هم هستند اعداد اول دوقلو می گوییم مثلا ۳ و ۵ و یا ۱۱ و ۱۳. هیچ کس نمی داند که پراکندگی این اعداد در میان سایر اعداد چگونه است و آیا تعداشان متناهی است یا نه بزگترین جفت شناخته شده ۱-۲۱۶۹۶۹۰×۳۳۲۱۸۹۲۵ و ۱+۲۱۶۹۶۹۰×۳۳۲۱۸۹۲۵ هستند. برای پیدا کردن اطلاعاتی راجع به جستجوی اعداد اول می توانید به سایت پروژه GIMPS سر بزنید. در نظر گذشتگان آزمایش اول بودن یک عدد و یافتن عوامل اول آن یک سوال بودند. کافی بودن عدد مورد نظر را به ترتیب به همه اعداد کوچکتر از آن تقسیم کنیم. اگر به هیچ کدام بخشپذیر نبود اول است و اگر بخشپذیر بود به این ترتیب عوامل اول آن معلوم می شوند. کم کم این فرایند ساده تر شد، مثلا حالا می دانیم که تقسیم کردن به همه اعداد کوچکتر از جذر عدد مورد نظر کافیست ( چرا؟ )، همچنین در صورتیکه اعداد اول کوچکتر از عدد مورد نظر شناخته شده باشند، تقسیم کردن به این اعداد کافیست. این روش ها برای اعداد نسبتا کوچک کار می کنند اما وقتی با عددی مثلا ۱۰۰ رقمی طرف باشیم اوضاع فرق می کند. حتی با سریع ترین کامپیوترها هم تقسیم کردن یک عدد ۱۰۰ رقمی به همه اعداد کوچکتر از آن خیلی بیشتر از عمر عالم طول می کشد. یک محاسبه سرانگشتی حوالی قرن هفدهم توجه ریاضیدانان به این نکته جلب شد که شاید راه های ساده تری برای آزمایش اول بودن یا نبودن یک عدد وجود داشته باشد چرا که روش تقسیم مقدار زیادی اطلاعات اضافی ( لیست عوامل اول، وقتی که جواب سوال منفی است ) تولید می کند که برای پاسخ گفتن به این سوال نیازی به آن ها نیست. فرما مدتی بعد نشان داد که این حدس صحیح بوده است. فرما (۱۶۰۱-۱۶۶۵) قضیه ای را ثابت کرد که تا امروز اساس همه روش های آزمایش اول بودن اعداد است و ما آن را با نام قضیه کوچک فرما می شناسیم. قضیه کوچک فرما: اگر p عددی اول و b عدد دلخواهی باشد که p و b نسبت به هم اول باشند، آن گاه باقیمانده تقسیم بر p و باقیمانده تقسیم b بر p همیشه برابرند. تنها مشکلی که وجود دارد این است که از آنجا که عکس قضیه فرما لزوما درست نیست – یعنی ممکن است بعضی از اعداد مرکب هم این خاصیت را داشته باشند – اگر باقیمانده b باشد نمی توان در مورد اول بودن یا نبودن a اظهارنظری کرد. این مشکل هم ۳۰۰ سال بعد در تابستان ۲۰۰۲ بوسیله سه ریاضیدان هندی به نامهای Agrawal، Kayal و Saxena حل شد و حالا می توانیم در کسری از ثانیه در مورد اول بودن عددی با ۱۰۰ رقم اظهارنظر کنیم
+ نوشته شده در شنبه نوزدهم فروردین ۱۳۹۶ساعت 19:37  توسط عباس مصلی نژاد
|
1650 سال قبل از میلاد |